
Atomic Claim Engine
& Concurrency

© Takashi Miyazaki, Unsplash

Assumptions

© Takashi Miyazaki, Unsplash

Assumptions

• Primary
• is the only system that processes commands from the domain
• is only read by command processors
• is append only
• has only one technical node (it is not partitioned / not a cluster)

• Replica’s
• are synchronised, they do not receive functional commands
• can be partitioned

Writing

Handling dependencies in
concurrent transactions
Decision: Domain specific software should
pessimistically lock a ‘functionally’ relevant
artifact to prevent collisions. We do not
rely on optimistic locking in the database.

© Takashi Miyazaki, Unsplash

How to prevent collisions?

Decision:

• By pessimistically locking a ‘functionally’ relevant artifact for other
writers.

• For example:
• Lock one or more aggregates
• Refinement: Specify operation + Lock on aggregates

• Requires information about operations that would interfere with other operations
(because they rely on the same data).

Preventing collisions is a ‘domain thing’ not a technical issue

• We cannot prevent ‘semantical conflicts’ by optimistic locking.
• For example: A semantical lock could also depend on reading data.

• Assume there is a business rule: When a person is in situation X, he or she can either apply to
obtain subsidy Y or subsidy Z. Not both.

• Two concurrent processes run. One to obtain Y and one for Z. Both read the information of
the person and confirm it is in situation X, and both do not find either Y or Z. So, both will end
successful. As a result, both Y and Z will be obtained.

• Optimistic locking is arbitrary since it depends on the granularity of the
underlying storage (and that granularity is arbitrary)

• e.g. a json blob / table row / atomic claim

Safe Observation Moment
Decision: We always travel back to a Safe
Observation Moment (for both reading
and writing transactions).

© Takashi Miyazaki, Unsplash

Issue of limited clock resolution

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

Tr
an

sa
ct

io
n

se
qu

en
ce

Transactions

System time

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

State

Claim type A Claim type B Claim type C

a3

a2

a2 > a3

a1 > a2

Time chosen for
transaction

Time travel.
Reads own writes!

Time travel
(for readers)

Mixed (r/w) transaction.
Last part is commit.

Read only transaction.

Snapshot
Moment

Time travel moment
(for readers)

Safe Observation
Moment

3. Without intervention reads at t3 cannot be repeated:
• Transaction #2 is changing a2 to a3.
• Transaction #3 will read a2 since #2 is not yet available.
• Transaction #4 will see a3.
• When we repeat the read at a later moment – by traveling back in

time to t3 – the query of #3 would return a3 and not a2.

As a result, readers that are starting at a moment when a commit is
happening, should read their data at a moment in the past where the
data will no longer change.

This is called the Safe Observation Moment (SOM).

1. This X-axis represents the system time
that we can register. The resolution of this
time is limited. For example, in
postgreSQL to microseconds.

Given the modern clock speeds of
processors we would need a higher
resolution to capture the actual time
when things happened in the system!

2. To illustrate this, transactions start and stop on times that are
not perfectly alligned with the ticks on the system time axis.
There can even be transactions starting at exactly the same time,
since processors can be multi core.

t2t1t0 t3

Scenario:
Postponing the start of new transactions during a commit

• If we could postpone the start of new transactions during a commit
(until after the commit),

and our database offers a snapshot isolation level
(like PostgreSQL and Firebird)

we’d always have a Safe Observation Moment.

• See explanation on next slide/page.

Blocking new transactions during the commit

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

Tr
an

sa
ct

io
n

se
qu

en
ce

Transactions

System time

t1t0 t3t2 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

State

Claim type X Claim type Y Claim type Z

Time chosen for
transaction

Time travel.
Reads own writes!

Time travel
(for readers)

Mixed (r/w) transaction.
Last part is commit.

Read only transaction.

Snapshot
Moment

Time travel moment
(for readers)

Safe Observation
Moment

2. By blocking any new transaction during the commit the
range t7 - t10 effectively becomes a single indivisible moment.

1. In a database offers an
isolated snapshot, everything
started before t7, will not see
the data written by #4.

3. Every transaction requesting
to start between t7 and t10 will
be postponed to t11. As a result
all those transactions will
include the data written by #4.

However … the bottleneck might be too large

• Writing large chunks of data could temporarily choke the system.

• Unsure: Could background processes impact the performance (like
perhaps the PostgreSQL vaccuum proces).

… If we do not want this bottleneck, we have to travel back to a safe
moment in time!

Decision: We do not want this bottleneck!

Traveling back in time to Safe Observation Moment – Transaction time = Start Commit

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

Tr
an

sa
ct

io
n

se
qu

en
ce

Transactions

System time

t1t0 t3t2 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

State

Claim type A Claim type B Claim type C

Time chosen for
transaction

Time travel.
Reads own writes!

Time travel
(for readers)

Mixed (r/w) transaction.
Last part is commit.

Read only transaction.

Snapshot
Moment

Time travel moment
(for readers)

Safe Observation
Moment

?

• Any reader can start at any moment.
• Any writer can start at any moment.
• At any observable moment only one commit may start.
• Long running transactions can be ignored. They will only become

relevant if they ever commit. (That is from our perspective, not
from MVCC perspective of the underlying database).

We will refine this requirement, in later examples!
Observable = System time (with limited resolution)

Traveling back in time to Safe Observation Moment – Transaction time = Start Transaction

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

Tr
an

sa
ct

io
n

se
qu

en
ce

Transactions

System time

t1t0 t3t2 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

State

Claim type A Claim type B Claim type C

Time chosen for
transaction

Time travel.
Reads own writes!

Time travel
(for readers)

Mixed (r/w) transaction.
Last part is commit.

Read only transaction.

Snapshot
Moment

Time travel moment
(for readers)

Safe Observation
Moment

?

• Any reader can start at any moment.
• At any given moment only one writer may start.
• Long running transactions are problematic. They force every reader

to read old data.

Determining the Safe Observation Moment … (based on Transaction Time = Start Commit)

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

Tr
an

sa
ct

io
n

se
qu

en
ce

Transactions

System time

t1t0 t3t2 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

State

Claim type A Claim type B Claim type C

Time chosen for
transaction

Time travel.
Reads own writes!

Time travel
(for readers)

Mixed (r/w) transaction.
Last part is commit.

Read only transaction.

Snapshot
Moment

Time travel moment
(for readers)

Safe Observation
Moment

• When starting #4 you should know you cannot use the commit time
of #3 since #2 is still comitting.

• So the criteria is not simply ‘the most recent comitted transaction’.
• We have to travel back in time to the commit moment before the

oldest still comitting transaction.
• There are two issues with this approach:
• 1. Clients might not see their own writes. (Assume a client is

responsible for both #3 and #4. #4 would not see the data of #3.
• 2. A replica that receives #3 might assume t13 is safe. At a later

moment it would receive #2 and data will be written at t10.

Solution 1:
In addition to the requirement ‘at any obervable moment only one
commit may start’ we need a new requirement:

While a commit is pending, no other commit may start.

Solution 2:
We make sure #3 is not synchronised to a replica before #2 is
committed.
(note: this would not solve issue 1!).

Chosen solution.

Transaction moment
Decision: We use either:
• A transaction ID, that is unique and

increasing. (preferred)
• The start of the commit time.

© Takashi Miyazaki, Unsplash

Transaction time
Start of transaction Start of commit

Used in ACID databases Used in eventually consistent (BASE) databases

Required for MVCC (actually transaction ordering,
based on their start, is required. Not the start ‘time’)

(Opiniated) It tells a better/more logical story of what
a transaction ‘has seen’: assuming there is snapshot
isolation, the transaction has seen the data from the
start of the transaction and it’s own writes.

This ’story’ is not perfect when concurrent
transactions are mutually depending (See example).

When working with Safe Observation Moments, the
system should be protected against long running
transactions.

When working with Safe Observation Moments, long
running transactions are no problem.

Easier for replication. (See example)

n.b. Transaction Time = End of commit is impossible, since the end cannot be determined when writing.

Chat GPT: Overview of Transaction Times for several vendors

Database Timestamp
Assignment

Notes

PostgreSQL Start Time PostgreSQL uses Multi-Version Concurrency Control (MVCC), where each transaction sees a snapshot of the database as of its start
time.

MySQL (InnoDB) Start Time InnoDB, the default storage engine for MySQL, uses MVCC, assigning transaction timestamps at the start to determine visibility.

Oracle Start Time Oracle's MVCC implementation assigns transaction timestamps at the start, ensuring consistent read views.

SQL Server Start Time SQL Server uses a form of MVCC called Snapshot Isolation, where transactions read data as of their start time.

Firebird Start Time Firebird uses MVCC, assigning transaction IDs at start time. Snapshot isolation transactions see the database state as of their start
time.

MongoDB
(WiredTiger)

Commit Time MongoDB's WiredTiger storage engine allows setting commit timestamps, determining when writes become visible to other
transactions.

Cassandra Commit Time Cassandra uses timestamps provided by clients or generated at commit time to resolve write conflicts and determine the latest
data.

FoundationDB Commit Time FoundationDB assigns a commit version at commit time, ensuring a global ordering of transactions.

Google Spanner Commit Time Spanner assigns commit timestamps at commit time, which can be accessed using the PENDING_COMMIT_TIMESTAMP() function.

CockroachDB Commit Time CockroachDB uses Hybrid Logical Clocks (HLC) to assign commit timestamps, ensuring consistency across distributed transactions.

TiDB Commit Time TiDB obtains the commit timestamp during the commit phase of a transaction, ensuring consistency in distributed environments.

Assumptions about data that has been seen by the transaction

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

Tr
an

sa
ct

io
n

se
qu

en
ce

Transactions

System time

t1t0 t3t2 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

State

Claim type A Claim type B Claim type C

Time chosen for
transaction

Time travel.
Reads own writes!

Time travel
(for readers)

Mixed (r/w) transaction.
Last part is commit.

Read only transaction.

Snapshot
Moment

Time travel moment
(for readers)

Safe Observation
Moment

Effectively you read at Tx = Start transaction + Own
writes.

By storing this all at Ty = Start commit one could
assume you’ve read everything between Tx and Ty.
While in practice you have only seen your own
writes in this period.

A read only transaction would read the state
at Tx = Start transaction. (Not at Ty = Start
commit/rollback).

Example: Two mutually dependant writing transactions

#1

#2

#3

#4

#5

#1

#2

#3

#4

#5

Tr
an

sa
ct

io
n

se
qu

en
ce

Transactions

System time

t1t0 t3t2 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

State

Claim type X Claim type Y Claim type Z

x1 y1 > y2

x1 > x2 y1

x1 y1 > y2

x1 > x2 y1

Time chosen for
transaction

Time travel.
Reads own writes!

Time travel
(for readers)

Mixed (r/w) transaction.
Last part is commit.

Read only transaction.

Snapshot
Moment

Time travel moment
(for readers)

Safe Observation
Moment

Writes x2 based on the fact that Y = y1

Writes y2 based on the fact that X = x1. Because #1 was written at t1, this could
suggest that X = x2 was available to #2.

Because #2 was written at t3, this could
suggest that Y = y2 was available to #1.

Transaction time = Start of commit

Transaction time = Start of transaction

Writes x2 based on the fact that Y = y1

Writes y2 based on the fact that X = x1.

Both conclusions are wrong.
Deriving causality in a concurrent environment

cannot be done without knowing what data has
been accessed and manipulated.

Example: Replication based on Transaction Time = Start of Transaction

#1

#2

#3

#4

#5

#1

#2

#3

#4

#5

Tr
an

sa
ct

io
n

se
qu

en
ce

Transactions

System time

t1t0 t3t2 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

State

Claim type X Claim type Y Claim type Z

Time chosen for
transaction

Time travel.
Reads own writes!

Time travel
(for readers)

Mixed (r/w) transaction.
Last part is commit.

Read only transaction.

Snapshot
Moment

Time travel moment
(for readers)

Safe Observation
Moment

Primary

Secondary

The secondary system will receive #2 first. The secondary
system does not know if there are any other transactions

running on the primary. As a result it does not know at
what moment the primary is safe to read. It can only
determine a SOM based on it’s own registration time.

Example: Replication based on Transaction Time = Start of Commit

#1

#2

#3

#4

#5

#1

#2

#3

#4

#5

Tr
an

sa
ct

io
n

se
qu

en
ce

Transactions

System time

t1t0 t3t2 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

State

Claim type X Claim type Y Claim type Z

Time chosen for
transaction

Time travel.
Reads own writes!

Time travel
(for readers)

Mixed (r/w) transaction.
Last part is commit.

Read only transaction.

Snapshot
Moment

Time travel moment
(for readers)

Safe Observation
Moment

Primary

Secondary

The secondary system will receive #2 first. As long as the primary system
guarantees no two commits will start at the same moment, the secondary

system now knows there will be no commits with a transaction time before t5.
(Aka there will be no claims with a ‘registered at’ before t5 after this). Therefore

it can use t5 as a SOM (either on the primary or on the secondary).

Decision

• We use either:
• A transaction ID, that is unique and increasing (preferred)
• The start of the commit time.

• For now we also store:
• Safe Observation Moment (SOM)
• Start of Transaction
• Start of Commit

• Starting a transaction should return the SOM to the client.

