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Assumptions

• Primary
• is the only system that processes commands from the domain
• is only read by command processors
• is append only
• has only one technical node (it is not partitioned / not a cluster)

• Replica’s
• are synchronised, they do not receive functional commands
• can be partitioned

Writing



Handling dependencies in 
concurrent transactions
Decision: Domain specific software should 
pessimistically lock a ‘functionally’ relevant 
artifact to prevent collisions. We do not 
rely on optimistic locking in the database.
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How to prevent collisions?

Decision:

• By pessimistically locking a ‘functionally’ relevant artifact for other 
writers.

• For example:
• Lock one or more aggregates
• Refinement: Specify operation + Lock on aggregates

• Requires information about operations that would interfere with other operations 
(because they rely on the same data).



Preventing collisions is a ‘domain thing’ not a technical issue

• We cannot prevent ‘semantical conflicts’ by optimistic locking.
• For example: A semantical lock could also depend on reading data.

• Assume there is a business rule: When a person is in situation X, he or she can either apply to 
obtain subsidy Y or subsidy Z. Not both.

• Two concurrent processes run. One to obtain Y and one for Z. Both read the information of 
the person and confirm it is in situation X, and both do not find either Y or Z. So, both will end 
successful. As a result, both Y and Z will be obtained.

• Optimistic locking is arbitrary since it depends on the granularity of the 
underlying storage (and that granularity is arbitrary)

• e.g. a json blob / table row / atomic claim



Safe Observation Moment
Decision: We always travel back to a Safe 
Observation Moment (for both reading 
and writing transactions).
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Issue of limited clock resolution
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3. Without intervention reads at t3 cannot be repeated:
• Transaction #2 is changing a2 to a3.
• Transaction #3 will read a2 since #2 is not yet available.
• Transaction #4 will see a3.
• When we repeat the read at a later moment – by traveling back in 

time to t3 – the query of #3 would return a3 and not a2.

As a result, readers that are starting at a moment when a commit is 
happening, should read their data at a moment in the past where the 
data will no longer change.

This is called the Safe Observation Moment (SOM).

1. This X-axis represents the system time 
that we can register. The resolution of this 
time is limited. For example, in 
postgreSQL to microseconds.

Given the modern clock speeds of 
processors we would need a higher 
resolution to capture the actual time 
when things happened in the system!

2. To illustrate this, transactions start and stop on times that are 
not perfectly alligned with the ticks on the system time axis.
There can even be transactions starting at exactly the same time, 
since processors can be multi core.

t2t1t0 t3



Scenario:
Postponing the start of new transactions during a commit

• If we could postpone the start of new transactions during a commit 
(until after the commit),

and our database offers a snapshot isolation level
(like PostgreSQL and Firebird)

we’d always have a Safe Observation Moment.

• See explanation on next slide/page.



Blocking new transactions during the commit
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2. By blocking any new transaction during the commit the 
range t7 - t10 effectively becomes a single indivisible moment.

1. In a database offers an 
isolated snapshot, everything 
started before t7, will not see 
the data written by #4.

3. Every transaction requesting 
to start between t7 and t10 will 
be postponed to t11. As a result 
all those transactions will 
include the data written by #4.



However … the bottleneck might be too large

• Writing large chunks of data could temporarily choke the system.

• Unsure: Could background processes impact the performance (like 
perhaps the PostgreSQL vaccuum proces).

… If we do not want this bottleneck, we have to travel back to a safe 
moment in time!

Decision: We do not want this bottleneck!



Traveling back in time to Safe Observation Moment – Transaction time = Start Commit
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?

• Any reader can start at any moment.
• Any writer can start at any moment.
• At any observable moment only one commit may start.
• Long running transactions can be ignored. They will only become 

relevant if they ever commit. (That is from our perspective, not 
from MVCC perspective of the underlying database).

We will refine this requirement, in later examples!
Observable = System time (with limited resolution)



Traveling back in time to Safe Observation Moment – Transaction time = Start Transaction
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?

• Any reader can start at any moment.
• At any given moment only one writer may start.
• Long running transactions are problematic. They force every reader 

to read old data.



Determining the Safe Observation Moment … (based on Transaction Time = Start Commit)
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• When starting #4 you should know you cannot use the commit time 
of #3 since #2 is still comitting.

• So the criteria is not simply ‘the most recent comitted transaction’.
• We have to travel back in time to the commit moment before the 

oldest still comitting transaction.
• There are two issues with this approach:
• 1. Clients might not see their own writes. (Assume a client is 

responsible for both #3 and #4. #4 would not see the data of #3.
• 2. A replica that receives #3 might assume t13 is safe. At a later 

moment it would receive #2 and data will be written at t10.

Solution 1:
In addition to the requirement ‘at any obervable moment only one 
commit may start’ we need a new requirement:  

While a commit is pending, no other commit may start.

Solution 2:
We make sure #3 is not synchronised to a replica before #2 is 
committed.
(note: this would not solve issue 1!).

Chosen solution.



Transaction moment
Decision: We use either:
• A transaction ID, that is unique and 

increasing. (preferred)
• The start of the commit time.
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Transaction time
Start of transaction Start of commit

Used in ACID databases Used in eventually consistent (BASE) databases

Required for MVCC (actually transaction ordering, 
based on their start, is required. Not the start ‘time’)

(Opiniated) It tells a better/more logical story of what 
a transaction ‘has seen’: assuming there is snapshot 
isolation, the transaction has seen the data from the 
start of the transaction and it’s own writes.

This ’story’ is not perfect when concurrent 
transactions are mutually depending (See example).

When working with Safe Observation Moments, the 
system should be protected against long running 
transactions.

When working with Safe Observation Moments, long 
running transactions are no problem.

Easier for replication. (See example)

n.b. Transaction Time = End of commit is impossible, since the end cannot be determined when writing.



Chat GPT: Overview of Transaction Times for several vendors

Database Timestamp 
Assignment

Notes

PostgreSQL Start Time PostgreSQL uses Multi-Version Concurrency Control (MVCC), where each transaction sees a snapshot of the database as of its start
time.

MySQL (InnoDB) Start Time InnoDB, the default storage engine for MySQL, uses MVCC, assigning transaction timestamps at the start to determine visibility.

Oracle Start Time Oracle's MVCC implementation assigns transaction timestamps at the start, ensuring consistent read views.

SQL Server Start Time SQL Server uses a form of MVCC called Snapshot Isolation, where transactions read data as of their start time.

Firebird Start Time Firebird uses MVCC, assigning transaction IDs at start time. Snapshot isolation transactions see the database state as of their start 
time.

MongoDB 
(WiredTiger)

Commit Time MongoDB's WiredTiger storage engine allows setting commit timestamps, determining when writes become visible to other 
transactions.

Cassandra Commit Time Cassandra uses timestamps provided by clients or generated at commit time to resolve write conflicts and determine the latest
data.

FoundationDB Commit Time FoundationDB assigns a commit version at commit time, ensuring a global ordering of transactions.

Google Spanner Commit Time Spanner assigns commit timestamps at commit time, which can be accessed using the PENDING_COMMIT_TIMESTAMP() function.

CockroachDB Commit Time CockroachDB uses Hybrid Logical Clocks (HLC) to assign commit timestamps, ensuring consistency across distributed transactions.

TiDB Commit Time TiDB obtains the commit timestamp during the commit phase of a transaction, ensuring consistency in distributed environments.



Assumptions about data that has been seen by the transaction
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Effectively you read at Tx = Start transaction + Own 
writes.

By storing this all at Ty = Start commit one could 
assume you’ve read everything between Tx and Ty. 
While in practice you have only seen your own 
writes in this period.

A read only transaction would read the state 
at Tx = Start transaction. (Not at Ty = Start 
commit/rollback).



Example: Two mutually dependant writing transactions
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Writes x2 based on the fact that Y = y1

Writes y2 based on the fact that X = x1. Because #1 was written at t1, this could 
suggest that X = x2 was available to #2.

Because #2 was written at t3, this could 
suggest that Y = y2 was available to #1.

Transaction time = Start of commit

Transaction time = Start of transaction

Writes x2 based on the fact that Y = y1

Writes y2 based on the fact that  X = x1.

Both conclusions are wrong.
Deriving causality in a concurrent environment 

cannot be done without knowing what data has 
been accessed and manipulated.



Example: Replication based on Transaction Time = Start of Transaction
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Secondary

The secondary system will receive #2 first. The secondary 
system does not know if there are any other transactions 

running on the primary. As a result it does not know at 
what moment the primary is safe to read. It can only 
determine a SOM based on it’s own registration time.



Example: Replication based on Transaction Time = Start of Commit
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The secondary system will receive #2 first. As long as the primary system 
guarantees no two commits will start at the same moment, the secondary 

system now knows there will be no commits with a transaction time before t5. 
(Aka there will be no claims with a ‘registered at’ before t5 after this). Therefore 

it can use t5 as a SOM (either on the primary or on the secondary).



Decision

• We use either:
• A transaction ID, that is unique and increasing (preferred)
• The start of the commit time.

• For now we also store:
• Safe Observation Moment (SOM)
• Start of Transaction
• Start of Commit

• Starting a transaction should return the SOM to the client.


